skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gunlu, Onur"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We consider a distributed function computation problem in which parties observing noisy versions of a remote source facilitate the computation of a function of their observations at a fusion center through public communication. The distributed function computation is subject to constraints, including not only reliability and storage but also privacy and secrecy. Specifically, 1) the remote source should remain private from an eavesdropper and the fusion center, measured in terms of the information leaked about the remote source; 2) the function computed should remain secret from the eavesdropper, measured in terms of the information leaked about the arguments of the function, to ensure secrecy regardless of the exact function used. We derive the exact rate regions for lossless and lossy single-function computation and illustrate the lossy single-function computation rate region for an information bottleneck example, in which the optimal auxiliary random variables are characterized for binary input symmetric output channels. We extend the approach to lossless and lossy asynchronous multiple-function computations with joint secrecy and privacy constraints, in which case inner and outer bounds for the rate regions differing only in the Markov chain conditions imposed are characterized. 
    more » « less